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HIV particle (enlarged view)

Targets of current drugs:
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Coat proteins on the viral surface 
bind to receptor molecules on 
human immune cell, tricking the 
cell into engulfing the virus.

The virus incorporates its genetic 
material into the human cell’s 
DNA.
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The cell’s normal machinery churns 
out viral RNA and long viral protein 
strands. The viral protein strands 
and RNA are assembled into 
immature “daughter” virus particles 
that bud off from the cell.

HIV protease chops the viral protein 
strands into separate proteins, 
causing the virus “daughter” particles 
to mature into infectious particles.

Mature viral particles are able to 
attack other human immune 
cells.
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Two identical copies of viral RNA 
make contact at the Ψ-site and form a 
stable RNA dimer.

Gag binds and helps the selection between 
spliced and unspliced RNA.

Partial adaptation from “The Structure of Life”, NIH publication No. 01-2778, National Institute of General Medical Sciences, Nov. 2000

Enlarged view
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Ψ-RNA
120 nt, ~38 kDa / strand

Highly conserved ~120 nt kDa region (38 kDa)
Involved in genome recognition and packaging (mediated by SL1) 
Specifically recognized by Gag/NC
Discriminates against cellular RNA and spliced viral RNA

3D structure is the fundamental determinant of Ψ activity
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Nucleocapsid (NC) p7:

• Nucleic acid chaperone protein
• Part of Gag polyprotein
• 55 amino acid protein; highly basic
• 2 CCHC zinc finger motifs that are 
required for specific binding to Ψ-RNA
• Mutation of Zn-finger domains renders viral 
particle non-infectious
• 3-D Structure of RNA:NC complex key to 
understanding mechanism 



Structural investigation using crosslinking
methods and mass spectrometric detection

- Footprinting
- Photo-crosslinking
- Bifunctional crosslinkers
- Simulated annealing and molecular modeling
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Tandem MS by FT-ICR (MS/MS, MSn)

SORI-CID —Collision-Induced Dissociation.  Ion excited against a 
background of neutral gas.  
– High incidence of internal fragments
– Chelated metal commonly lost from metalloproteins

BIRD — Blackbody Infrared Radiative Dissociation.  Blackbody 
radiation emitted from the walls of the trap in the form of heat is 
absorbed by the ion until fragmentation occurs.  
– Need a very well-characterized temperature detection system

IRMPD — Infra-red Multi-Photon Dissociation.  Low-intensity IR 
laser fired at sample multiple times until fragmentation occurs.
– Requires laser, additional optics

ECD—Electron Capture Dissociation.  Low-energy electrons fired 
at ion, capture of electron results in fragmentation of backbone
bond.
– Internal filament aligned behind cell
– Electrons ~0.5 eV



SORI-CID of holo-NC:

•High number of fragments 
observed

•High incidence of internal 
fragments complicates 
data interpretation

•No fragments observed to 
retain Zn ion no 
information on tertiary 
structure 
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Why ECD?
Most other slow-heating methods (SORI-CID, 
IRMPD, BIRD) occur by ergodic processes

Energy deposited in molecule is randomized prior to 
fragmentation
Typically, weakest bonds broken first

• PTMs usually lost
• Most common cleavage at amide bond
• Little or no information on tertiary structure

ECD is non-ergodic
Fragmentation occurs prior to energy randomization

• Non-selective process—most inter-residue bonds broken
• PTMs often still intact
• Side chains stay intact—possible to obtain tertiary structure 

information (intramolecular H-bonds not disrupted)
• Easily used with other techniques (usu. CID, IRMPD)



ECD in Bruker ICR cell:
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ECD of peptides produces distinctive 
fragmentation pattern
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Peptides fragment in a characteristic 
manner:
ECD produces predominantly c, z· ions
– Some a·, y fragments also observed
– Amino acid side chains typically not altered

CID, IRMPD produce predominantly b, y ions—molecule 
fragments at the weakest point—amide bond

–PTMs usually lost before amide bond breaks



• Emission of e- low using standard filament—need to 
increase no. of e- to observed significant fragmentation

• New filament sits ~ 10 cm closer to cell than old filament



•Filament sits directly 
behind rear trap (~1.8 
cm)

•Increases our success 
with ECD by ~100-fold!
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Cleavage at 13 of 55 
inter-residue locations

29 Total fragments

3 Fragments retain Zn 
ion

ECD of Holo-NC



Characteristic features of ECD:
• Cleavage occurs predominantly in central 75% of 

protein or polymer
– CID, SORI, or IRMPD used to fragment end pieces

• PTMs typically not cleaved
– Ideal for locating sites of phosphorylation, glycosylation

• Side chains relatively unaffected
– Tertiary non-covalent structure is not lost
– Reflects protein folding/unfolding—Ubiquitin studies

• Sites of high H- affinity tend to be preferentially 
cleaved
– S-S bonds broken and backbone site cleaved by capture of 

one e-
– Do chelated metal centers show the same behavior?
– Can ECD be used to characterize metalloproteins?



19 of 29 fragments 
observed from ECD of 
Holo-NC localized 
around 4 residues

C28, C36, C39 directly 
involved in Zn chelation

No fragmentation in C-
terminal or linker regions
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ECD of Apo-NC

Cleavage at 33 of 54 
inter-residue locations

45 Total fragments
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ECD of Apo-NC shows distinctly 
different pattern of fragmentation
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More complete sequence coverage than for holo-NC

Extensive fragmentation in N-, C-terminal regions

Did not show high frequency of cleavage around same residues as 
holo-NC



Trypsin Digestion of NC
Partial digestion with 

trypsin at neutral pH 
leaves intact finger 
regions F1 and F2

F1 and F2 subjected to 
ECD in both holo- and 
apo- forms
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Cleavage at 17 of 21 inter-
residue locations

29 Total fragments 
observed

Apo-F1

Cleavage at 6 of 20 inter-
residue locations

10 Total fragments observed
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Holo-F1

Holo-F2
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Is there a “minimum structure” required for 
the retention of Zn by ECD fragment ions?

C-N-K
Zn

R-A-P-R

F1 and F2 show distinct 
differences in their ability to 
retain Zn ion following ECD 

Solution-phase data 
indicate Zn ejected from F2 
more rapidly than from F1

Do ECD data indicate 
differences in how Zn is 
lost in the gas phase?
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Atmospheric Pressure MALDI

• MALDI commonly used as an alternative 
to ESI

• AP MALDI interface recently developed for 
ion trap (Laiko, 1998)
– Becoming increasingly popular for protein and 

digest analysis
– No need for TOF detector

• Similar interface develped for FT-ICR 
(MassTech, Columbia, MD)





•337nm N2 laser, interfaced 
via 400 µm fiber optic

•High-resolution CCD camera 
allows manual adjustment of 
target 

•Sample target placed on a 
computer-controlled x,y stage



Analysis of BSA digest

• 10 fmol sample spot, 
• 12.7 sec total 

acquisition time 
• Mass range, 

sensitivity comparable 
with ion trap
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MALDI samples amenable to tandem 
analysis

SORI-CID of Substance P

400 600 800 1000 1200



Superior resolution and mass 
accuracy

684.0 685.0 686.0 m/z
0.0

0.2

0.4

0.6

0.8

1.0

r.i.

100 fmol each protein 

Analysis of 2 peptides that 
differ by 1 amino acid

-YGGFLK vs. YGGFLQ

-Theor. ∆M = 0.0364 Da

-Exp. ∆M = 0.0358 Da

Resolution = 310,000



• 2 pmol spot
• Full sequence coverage

– Similar to or exceeding that 
observed in ESI

– Amenable to chemical 
probing

• Observed in both positive 
and negative mode

• Shows promise for 
analysis of RNA-protein 
complexes

Analysis of Oligonucleotide digests:
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Advantages:
• Simple, rapid switching from ESI to MALDI 

without breaking vacuum
• Low sample consumption (fmol to amol

consumed)
• Increased resolution and mass accuracy 

associated with FTMS while achieving sensitivity 
and LODs similar to ion trap

• Sample prep (matrices, sample levels) similar to 
traditional (vacuum) MALDI

• Ionization more gentle than vacuum MALDI
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